Computing multiple spectrograms with the Public API

Computing multiple spectrograms with the Public API [1]#

As always in the Public API, the first step is to build the dataset.

An Instrument can be provided to the Dataset for the WAV data to be converted in pressure units. This will lead the resulting spectra to be expressed in dB SPL (rather than in dB FS):

from pathlib import Path

audio_folder = Path(r"_static/sample_audio")

from osekit.public_api.dataset import Dataset
from osekit.core_api.instrument import Instrument

dataset = Dataset(
    folder=audio_folder,
    strptime_format="%y%m%d_%H%M%S",
    instrument=Instrument(end_to_end_db=150.0),
)

dataset.build()
	2025-08-27 10:39:09,727
Building the dataset...
	2025-08-27 10:39:09,728
Analyzing original audio files...
	2025-08-27 10:39:09,735
Organizing dataset folder...
	2025-08-27 10:39:09,737
Build done!

The Public API Dataset is now analyzed and organized:

print(f"{' DATASET ':#^60}")
print(f"{'Begin:':<30}{str(dataset.origin_dataset.begin):>30}")
print(f"{'End:':<30}{str(dataset.origin_dataset.end):>30}")
print(f"{'Sample rate:':<30}{str(dataset.origin_dataset.sample_rate):>30}\n")

print(f"{' ORIGINAL FILES ':#^60}")
import pandas as pd

pd.DataFrame(
    [
        {
            "Name": f.path.name,
            "Begin": f.begin,
            "End": f.end,
            "Sample Rate": f.sample_rate,
        }
        for f in dataset.origin_files
    ],
).set_index("Name")
######################### DATASET ##########################
Begin:                                   2022-09-25 22:34:50
End:                                     2022-09-25 22:36:50
Sample rate:                                           48000

###################### ORIGINAL FILES ######################
Begin End Sample Rate
Name
sample_220925_223450.wav 2022-09-25 22:34:50 2022-09-25 22:35:00 48000
sample_220925_223500.wav 2022-09-25 22:35:00 2022-09-25 22:35:10 48000
sample_220925_223510.wav 2022-09-25 22:35:10 2022-09-25 22:35:20 48000
sample_220925_223520.wav 2022-09-25 22:35:20 2022-09-25 22:35:30 48000
sample_220925_223530.wav 2022-09-25 22:35:30 2022-09-25 22:35:40 48000
sample_220925_223600.wav 2022-09-25 22:36:00 2022-09-25 22:36:10 48000
sample_220925_223610.wav 2022-09-25 22:36:10 2022-09-25 22:36:20 48000
sample_220925_223620.wav 2022-09-25 22:36:20 2022-09-25 22:36:30 48000
sample_220925_223630.wav 2022-09-25 22:36:30 2022-09-25 22:36:40 48000
sample_220925_223640.wav 2022-09-25 22:36:40 2022-09-25 22:36:50 48000

Since we will run a spectral analysis, we need to define the FFT parameters:

from scipy.signal import ShortTimeFFT
from scipy.signal.windows import hamming

sample_rate = 24_000

sft = ShortTimeFFT(win=hamming(1024), hop=128, fs=sample_rate)

To run analyses in the Public API, use the Analysis class:

from osekit.public_api.analysis import Analysis, AnalysisType
from pandas import Timestamp, Timedelta

analysis = Analysis(
    analysis_type=AnalysisType.MATRIX
    | AnalysisType.SPECTROGRAM
    | AnalysisType.WELCH,  # we want to export these three spectrum outputs
    begin=Timestamp("2022-09-25 22:35:15"),
    end=Timestamp("2022-09-25 22:36:25"),
    data_duration=Timedelta(seconds=5),
    sample_rate=sample_rate,
    fft=sft,
    v_lim=(0.0, 150.0),  # Boundaries of the spectrograms
    colormap="viridis",  # Default value
    name="all_spectral_output",
)

The Core API can still be used on top of the Public API.

We will filter out the empty data this way:

# Returns a Core API AudioDataset that matches the analysis
audio_dataset = dataset.get_analysis_audiodataset(analysis=analysis)

# Filter the returned AudioDataset
audio_dataset.data = [ad for ad in audio_dataset.data if not ad.is_empty]
	2025-08-27 10:39:09,765
Creating the audio data...

We can also glance at the spectrogram results with the Core API:

import matplotlib.pyplot as plt

analysis_spectro_dataset = dataset.get_analysis_spectrodataset(
    analysis=analysis,
    audio_dataset=audio_dataset,  # So that the filtered SpectroDataset is returned
)

analysis_spectro_dataset.data[1].plot()
plt.show()
_images/71b9da8642732aedeaf457fe3b786b5704452497328c810fcb82e9793126303f.png

Running the analysis while specifying the filtered audio_dataset will skip the empty AudioData (and thus the empty SpectroData).

dataset.run_analysis(analysis=analysis, audio_dataset=audio_dataset)
	2025-08-27 10:39:10,272
Running analysis...
	2025-08-27 10:39:10,273
Computing and writing spectrum matrices and spectrograms...
	2025-08-27 10:39:16,464
Computing and writing welches...
	2025-08-27 10:39:16,545
Analysis done!

All the new files from the analysis are stored in a SpectroDataset named after analysis.name:

pd.DataFrame(
    [
        {
            "Exported file": list(sd.files)[0].path.name,
            "Begin": sd.begin,
            "End": sd.end,
            "Sample Rate": sd.fft.fs,
        }
        for sd in dataset.get_dataset(analysis.name).data
    ],
).set_index("Exported file")
Begin End Sample Rate
Exported file
2022_09_25_22_35_15_000000.npz 2022-09-25 22:35:15 2022-09-25 22:35:20 24000
2022_09_25_22_35_20_000000.npz 2022-09-25 22:35:20 2022-09-25 22:35:25 24000
2022_09_25_22_35_25_000000.npz 2022-09-25 22:35:25 2022-09-25 22:35:30 24000
2022_09_25_22_35_30_000000.npz 2022-09-25 22:35:30 2022-09-25 22:35:35 24000
2022_09_25_22_35_35_000000.npz 2022-09-25 22:35:35 2022-09-25 22:35:40 24000
2022_09_25_22_36_00_000000.npz 2022-09-25 22:36:00 2022-09-25 22:36:05 24000
2022_09_25_22_36_05_000000.npz 2022-09-25 22:36:05 2022-09-25 22:36:10 24000
2022_09_25_22_36_10_000000.npz 2022-09-25 22:36:10 2022-09-25 22:36:15 24000
2022_09_25_22_36_15_000000.npz 2022-09-25 22:36:15 2022-09-25 22:36:20 24000
2022_09_25_22_36_20_000000.npz 2022-09-25 22:36:20 2022-09-25 22:36:25 24000